snR3
ALTERNATE NAMES: None reported
LENGTH: 194 nts
PROCESS: Pseudouridine formation in rRNA
TARGET SITE(S):
25S rRNA :
Y 2129
25S rRNA : Y 2133
25S rRNA : Y 2264
Click number to see the target site in the 2D structure: 25S-2129 , 25S-2133 , 25S-2264
Click number to see the approximate location of the modification site in the ribosome: 25S-2129 , 25S-2133 , 25S-2264
GENOMIC ORGANIZATION: Independent gene
SGD ORF MAP
GENE DISRUPTION PHENOTYPE: Viable
CORRESPONDENCES IN HUMANS AND PLANTS:
Click here and see that yeast and humans have corresponding modifications and guide snoRNAs.
None reported in plants
PHYLOGENETIC CONSERVATION IN FUNGI:
Schizosaccharomyces pombe has an orthologous snoRNA .
Click here to examine conservation of the snoRNA in fungal genomes using BLAST.
RNA SEQUENCE:
1 aacuuugucc uaaaguacua auccaccgca uuagacagua cgaagaucga gcuauuuauu
61 ugaacacucg gucuuauucg ugauaagcgu aauguggaga gaucaauuuc cgggucauuu
121 auaagaacuc gaguggauug cuaguuguuu ugauuagcug aaugagacuc gagugucaga
181 agaugacuau auuu
YEAST GENOME DATABASE ENTRY:Click here to view the SGD entry for this snoRNA.
REFERENCES:
Li, S. G., H. Zhou, Y. P. Luo, P. Zhang, and L. H. Qu. 2005. Identification and functional analysis of 20 Box H/ACA small nucleolar RNAs (snoRNAs) from Schizosaccharomyces pombe. J. Biol. Chem. 280 :16446-16455.
Ganot, P., M. Caizergues-Ferrer, and T. Kiss. 1997. The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation. Genes Dev. 11 :941-956.
Wise, J. A., D. Tollervey, D. Maloney, H. Swerdlow, E. J. Dunn, and C. Guthrie. 1983. Yeast contains small nuclear RNAs encoded by single copy genes. Cell 35 :743-751.
Tollervey, D., J. A. Wise, and C. Guthrie. 1983. A U4-like small nuclear RNA is dispensable in yeast. Cell 35 :753-762.
Parker, R., T. Simmons, E. O. Shuster, P. G. Siliciano, and C. Guthrie. 1988. Genetic analysis of small nuclear RNAs in Saccharomyces cerevisiae: viable sextuple mutant. Mol. Cell. Biol. 8 :3150-3159.
Ni, J., A. L. Tien, and M. J. Fournier. 1997. Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 89 :565-573.
Ganot, P., M. L. Bortolin, and T. Kiss. 1997. Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 89 :799-809.
Balakin, A. G., L. Smith, and M. J. Fournier. 1996. The RNA world of the nucleolus: two major families of small RNAs defined by different box elements with related functions. Cell 86 :823-834.
Lafontaine, D. L., C. Bousquet-Antonelli, Y. Henry, M. Caizergues-Ferrer, and D. Tollervey. 1998. The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev. 12 :527-537.
Watkins, N. J., A. Gottschalk, G. Neubauer, B. Kastner, P. Fabrizio, M. Mann, and R. Luhrmann. 1998. Cbf5p, a potential pseudouridine synthase, and Nhp2p, a putative RNA-binding protein, are present together with Gar1p in all H BOX/ACA-motif snoRNPs and constitute a common bipartite structure. RNA 4 :1549-1568.
Henras, A., Y. Henry, C. Bousquet-Antonelli, J. Noaillac-Depeyre, J. P. Gelugne, and M. Caizergues-Ferrer. 1998. Nhp2p and Nop10p are essential for the function of H/ACA snoRNPs. EMBO J. 17 :7078-7090.
Schattner, P., W. A. Decatur, C. A. Davis, M. Ares, Jr., M. J. Fournier, and T. M. Lowe. 2004. Genome-wide searching for pseudouridylation guide snoRNAs: analysis of the Saccharomyces cerevisiae genome. Nucleic Acids Res. 32 :4281-4296.
Torchet, C., G. Badis, F. Devaux, G. Costanzo, M. Werner, and A. Jacquier. 2005. The complete set of H/ACA snoRNAs that guide rRNA pseudouridylations in Saccharomyces cerevisiae. RNA 11 :928-938.