snR35

ALTERNATE NAMES: None reported

LENGTH: 204 nts

PROCESS: Pseudouridine formation in rRNA

TARGET SITE(S):
18S rRNA: Ψ1191      (Note: This nucleotide goes onto be hypermodified.)

Guide Domains
  Click number to see the target site in the 2D structure: 18S-1191
Click number to see the approximate location of the modification site in the ribosome: 18S-1191

GENOMIC ORGANIZATION: Independent gene
 

SGD ORF MAP
ORFmap

GENE DISRUPTION PHENOTYPE: Viable

CORRESPONDENCES IN HUMANS AND PLANTS:
Click here and see that yeast and humans have corresponding modifications and guide snoRNAs.

None reported in plants

PHYLOGENETIC CONSERVATION IN FUNGI:
Schizosaccharomyces pombe has an orthologous snoRNA.

Click here to examine conservation of the snoRNA in fungal genomes using BLAST.

RNA SEQUENCE:

   1 auacaaaauu aaucgugcgg auuaauaauc caggacuaua aaaccguguu guuuauaucg
  61 agucucuuuu gguauaagcg ucaaguccau cggagagauc aucauuuugu ucaucuuaau
 121 gcccuuuugu guaggaaauu gagggaaguu uaggcuucuc aacauuuuaa gacgccuaug
 181 caagggcugg uaggacagac augc
 

YEAST GENOME DATABASE ENTRY:
Click here to view the SGD entry for this snoRNA.

REFERENCES:
Bakin, A., and J. Ofengand. 1995. Mapping of the 13 pseudouridine residues in Saccharomyces cerevisiae small subunit ribosomal RNA to nucleotide resolution. Nucleic Acids Res. 23:3290-3294.
Balakin, A. G., L. Smith, and M. J. Fournier. 1996. The RNA world of the nucleolus: two major families of small RNAs defined by different box elements with related functions. Cell 86:823-834.
Brand, R. C., J. Klootwijk, R. J. Planta, and B. E. Maden. 1978. Biosynthesis of a hypermodified nucleotide in Saccharomyces carlsbergensis 17S and HeLa-cell 18S ribosomal ribonucleic acid. Biochem. J. 169:71-77.
Samarsky, D. A., A. G. Balakin, and M. J. Fournier. 1995. Characterization of three new snRNAs from Saccharomyces cerevisiae: snR34, snR35 and snR36. Nucleic Acids Res. 23:2548-2554.
Ganot, P., M. L. Bortolin, and T. Kiss. 1997. Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 89:799-809.
Ganot, P., M. Caizergues-Ferrer, and T. Kiss. 1997. The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation. Genes Dev. 11:941-956.
Lafontaine, D. L., C. Bousquet-Antonelli, Y. Henry, M. Caizergues-Ferrer, and D. Tollervey. 1998. The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev. 12:527-537.
Watkins, N. J., A. Gottschalk, G. Neubauer, B. Kastner, P. Fabrizio, M. Mann, and R. Luhrmann. 1998. Cbf5p, a potential pseudouridine synthase, and Nhp2p, a putative RNA-binding protein, are present together with Gar1p in all H BOX/ACA-motif snoRNPs and constitute a common bipartite structure. RNA 4:1549-1568.
Henras, A., Y. Henry, C. Bousquet-Antonelli, J. Noaillac-Depeyre, J. P. Gelugne, and M. Caizergues-Ferrer. 1998. Nhp2p and Nop10p are essential for the function of H/ACA snoRNPs. EMBO J. 17:7078-7090.
Li, S. G., H. Zhou, Y. P. Luo, P. Zhang, and L. H. Qu. 2005. Identification and functional analysis of 20 Box H/ACA small nucleolar RNAs (snoRNAs) from Schizosaccharomyces pombe. J. Biol. Chem. 280:16446-16455.
Liang, X. H., Q. Liu, and M. J. Fournier. 2009. Loss of rRNA modifications in the decoding center of the ribosome impairs translation and strongly delays pre-rRNA processing. RNA 15:1716-1728.


Last update: April 1, 2010 3:23 PM.