Extracting information from published crystallographic data

Steps in solving a structure

Topics

Case 1: the refolding loop

- Missing atoms, B-factors and multiple crystal forms as a measure of flexibility
- What is the role of crystal contacts?
- Looking at electron density

Case 2: How do we get from A to B?

- Superimposing similar structures
- Looking for clashes

Case 3: How careful was I in 1999?

 Checking your favorite part of a protein structure for possible alternative interpretations

Case 1: from Selase's PhD defense

- Proteolytic assay to probe for transition between transcription initiation and elongation in T7 RNA polymerase
- Protein conformation of both initiation and elongation state are known (1QLN, 1MSW)
- Question from the audience: "Does the refolding loop really refold, or does it transition from unfolded to folded?"

Background info (straight from the thesis)

Figure 1.1.0: Labeled regions of the crystal structures of T7 RNA polymerase initiation and elongation complexes. (A) Initiation complex (1QLN); (B) Elongation complex (1MSW); Part of the C-terminal domain (residues 72-152 and 204-258) is color coded in grey, while the rigid N-terminal domain is colored forest green. In the elongation complex, the N-terminal 20 residues gets extended by residues 44-60 to 38 residues and the entire helix is colored yellow.

The proteolytic assay

Figure 2.6.0: Partial tryptic digest of transcription complexes;

SDS gel electrophoresis of complexes halted at the indicated position and then exposed to 1.2 equivalents of trypsin for 30 seconds prior to quenching in a 5X SDS gel loading buffer (0.225M Tris HCl, 5% SDS, 50% glycerol and 0.05% bromophenol blue) at room 'E' the temperature. shows polymerase only, without proteolysis; (B) Plot of sink challenge data from figure 2.4.0 (\square) compared to plot of relative the band intensity $(I_{80kDa}/(I_{80kDa}+I_{88kDa}+I_{98kDa}))$ at each stall position in "A" (0).

Case 1: list of tasks

- 1. Check for missing atoms/residues
- 2. Look at B-factors
- 3. Check for crystal contacts
- 4. Look at other crystal forms

The Protein Database (PDB)

- All journals require deposition of coordinates (sometimes instantly, sometimes after 6 mo)
- Not all journals require deposition of raw data
- Some information is easily available directly from the PDB, but some questions require downloading the crystallographic model and looking at it with specialized tools
- T7 polymerase during initiation: <u>1QLN</u>

Tools

- Firstglance in Jmol
- Electron density server (only if raw data available)
 - Download density
 - How well do atoms fit to map?
 - Many other aspects
- What if? (you can upload your own coordinates)
 - Crystal contacts to 5 Å distance
 - Atomic clashes
- Helixweb, NIH
 - B-factor plot

B-factors and disorder

- Synonyms: Temperature factors, atomic displacement factors
- B-factors describe how the electron density of an atom is broadened by static and dynamic disorder in the crystal

Static disorder: distinct atomic positions in different unit cells of the crystal Dynamic disorder: changes in conformation over time during the measurement

B-factor	Displacement
20 Å ²	0.25 Å
40 Å ²	0.51 Å
80 Å ²	1.01 Å

Disorder makes interpretation more difficult

Shading represents noise due to 1) errors in experimental data 2) errors in phases derived from model

The asymmetric unit

- Crystal symmetry duplicates/triplicates etc. molecules placed into the unit cell
- The unique volume of the unit cell not related by crystal symmetry is called asymmetric unit
- Non-crystallographic symmetry (NCS)
 - the asymmetric unit often contains more than one copy of the protein
 - the operations superimposing these multiple copies are called non-crystallographic symmetry operations
 - NCS-related molecules aren't identical and have different crystal environments

X-ray crystallography course 2008, Karsten Theis, UMass Amherst

List of structures (from Uniprot)

1ARO,	X-ray, 2.80 Å,	P=1-883.
1CEZ,	X-ray, 2.40 Å,	A=1-883.
1H38,	X-ray, 2.90 Å,	A/B/C/D=1-883.
1MSW,	X-ray, 2.10 Å,	D=1-883.
1QLN,	X-ray, 2.40 Å,	A=1-883.
$\overline{180V}$,	X-ray, 3.20 Å,	A/B/C/D=1-883.
1S76,	X-ray, 2.88 Å,	D=1-883.
1S77,	X-ray, 2.69 Å,	D=1-883.
2PI4,	X-ray, 2.50 Å,	A=6-883.
2PI5,	X-ray, 2.90 Å,	A=6-883.
4RNP,	X-ray, 3.00 Å,	A/B/C=1-883.

Case 2

- Selase found that the refolding loop is protected from proteolysis before the promoter falls off
- Can we build a model in which the refolding loop is in the elongation conformation while the rest of the N-terminal part of T7 RNAP is still in its initiation conformation?
- Tasks
 - Superimpose the two structures
 - Look for clashes
 - Modify the resulting model to remove clashes

Interpretation of electron density

Building a model into the electron density involves interpretation and prior knowledge

- Protein/solvent regions
- C-alpha trace
- main chain, peptide direction
- sequence assignment
- side chain conformations
- disulfides, metals, glycosylation and other surprises

Pop quiz: interpreting electron density

- 1) Which pairs of amino acids have very similar electron density and are thus difficult to distinguish crystallographically? Asp/Glu; Thr/Val; Leu/Ile; Lys/Met; Asp/Asn; Leu/Asp; Glu/Gln
- 2) Which amino acids other than histidine have two side chain conformations resulting in almost identical electron density? What could help to distinguish the two possible conformations?

