include("popupscript.inc"); ?>
ALTERNATE NAMES: None reported
LENGTH: 197 nts
PROCESS: Pseudouridine formation in rRNA
TARGET SITE(S): 25S rRNA: Y1004 25S rRNA: Y1124
GENOMIC ORGANIZATION: Independent gene
GENE DISRUPTION PHENOTYPE: Viable
CORRESPONDENCES IN HUMANS AND PLANTS: Click here and see that yeast and humans have corresponding modifications and guide snoRNAs.
Click here and see that yeast and Arabidopsis have corresponding modifications and guide snoRNAs.
PHYLOGENETIC CONSERVATION IN FUNGI: Schizosaccharomyces pombe has an orthologous snoRNA.
Click here to examine conservation of the snoRNA in fungal genomes using BLAST.
RNA SEQUENCE:
1 aucauucaau aaacugaucu uccggauuac caugcuuaag acaucacgcc uccauauguc 61 uauauaaagc gcaaauggcu ggaaguagac caauuuuuuu uguuccuagc uuuucauuau 121 ugaaaucuaa uccaguuuua augguuuuuc uuaauuaaga aaacaaauua ucauugguuc 181 gcucuaggug uacauau
YEAST GENOME DATABASE ENTRY:Click here to view the SGD entry for this snoRNA.
REFERENCES: Li, S. G., H. Zhou, Y. P. Luo, P. Zhang, and L. H. Qu. 2005. Identification and functional analysis of 20 Box H/ACA small nucleolar RNAs (snoRNAs) from Schizosaccharomyces pombe. J. Biol. Chem. 280:16446-16455. Balakin, A. G., L. Smith, and M. J. Fournier. 1996. The RNA world of the nucleolus: two major families of small RNAs defined by different box elements with related functions. Cell 86:823-834. Riedel, N., J. A. Wise, H. Swerdlow, A. Mak, and C. Guthrie. 1986. Small nuclear RNAs from Saccharomyces cerevisiae: unexpected diversity in abundance, size, and molecular complexity. Proc. Natl. Acad. Sci. U. S. A. 83:8097-8101. Parker, R., T. Simmons, E. O. Shuster, P. G. Siliciano, and C. Guthrie. 1988. Genetic analysis of small nuclear RNAs in Saccharomyces cerevisiae: viable sextuple mutant. Mol. Cell. Biol. 8:3150-3159. Ganot, P., M. Caizergues-Ferrer, and T. Kiss. 1997. The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation. Genes Dev. 11:941-956. Ganot, P., M. L. Bortolin, and T. Kiss. 1997. Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 89:799-809. Lafontaine, D. L., C. Bousquet-Antonelli, Y. Henry, M. Caizergues-Ferrer, and D. Tollervey. 1998. The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev. 12:527-537. Watkins, N. J., A. Gottschalk, G. Neubauer, B. Kastner, P. Fabrizio, M. Mann, and R. Luhrmann. 1998. Cbf5p, a potential pseudouridine synthase, and Nhp2p, a putative RNA-binding protein, are present together with Gar1p in all H BOX/ACA-motif snoRNPs and constitute a common bipartite structure. RNA 4:1549-1568. Henras, A., Y. Henry, C. Bousquet-Antonelli, J. Noaillac-Depeyre, J. P. Gelugne, and M. Caizergues-Ferrer. 1998. Nhp2p and Nop10p are essential for the function of H/ACA snoRNPs. EMBO J. 17:7078-7090. Bortolin, M. L., P. Ganot, and T. Kiss. 1999. Elements essential for accumulation and function of small nucleolar RNAs directing site-specific pseudouridylation of ribosomal RNAs. EMBO J. 18:457-469. Fernandez, C. F., B. K. Pannone, X. Chen, G. Fuchs, and S. L. Wolin. 2004. An Lsm2-Lsm7 complex in Saccharomyces cerevisiae associates with the small nucleolar RNA snR5. Mol. Biol. Cell 15:2842-2852.