snR35
ALTERNATE NAMES: None reported
LENGTH: 204 nts
PROCESS: Pseudouridine formation in rRNA
TARGET SITE(S):
18S rRNA :
Ψ 1191 (Note: This nucleotide goes onto be hypermodified .)
Click number to see the target site in the 2D structure: 18S-1191
Click number to see the approximate location of the modification site in the ribosome: 18S-1191
GENOMIC ORGANIZATION: Independent gene
SGD ORF MAP
GENE DISRUPTION PHENOTYPE: Viable
CORRESPONDENCES IN HUMANS AND PLANTS: Click here and see that yeast and humans have corresponding modifications and guide snoRNAs.
None reported in plants
PHYLOGENETIC CONSERVATION IN FUNGI:
Schizosaccharomyces pombe has an orthologous snoRNA .
Click here to examine conservation of the snoRNA in fungal genomes using BLAST.
RNA SEQUENCE:
1 auacaaaauu aaucgugcgg auuaauaauc caggacuaua aaaccguguu guuuauaucg
61 agucucuuuu gguauaagcg ucaaguccau cggagagauc aucauuuugu ucaucuuaau
121 gcccuuuugu guaggaaauu gagggaaguu uaggcuucuc aacauuuuaa gacgccuaug
181 caagggcugg uaggacagac augc
YEAST GENOME DATABASE ENTRY:Click here to view the SGD entry for this snoRNA.
REFERENCES:
Bakin, A., and J. Ofengand. 1995. Mapping of the 13 pseudouridine residues in Saccharomyces cerevisiae small subunit ribosomal RNA to nucleotide resolution. Nucleic Acids Res. 23 :3290-3294.
Balakin, A. G., L. Smith, and M. J. Fournier. 1996. The RNA world of the nucleolus: two major families of small RNAs defined by different box elements with related functions. Cell 86 :823-834.
Brand, R. C., J. Klootwijk, R. J. Planta, and B. E. Maden. 1978. Biosynthesis of a hypermodified nucleotide in Saccharomyces carlsbergensis 17S and HeLa-cell 18S ribosomal ribonucleic acid. Biochem. J. 169 :71-77.
Samarsky, D. A., A. G. Balakin, and M. J. Fournier. 1995. Characterization of three new snRNAs from Saccharomyces cerevisiae: snR34, snR35 and snR36. Nucleic Acids Res. 23 :2548-2554.
Ganot, P., M. L. Bortolin, and T. Kiss. 1997. Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 89 :799-809.
Ganot, P., M. Caizergues-Ferrer, and T. Kiss. 1997. The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation. Genes Dev. 11 :941-956.
Lafontaine, D. L., C. Bousquet-Antonelli, Y. Henry, M. Caizergues-Ferrer, and D. Tollervey. 1998. The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev. 12 :527-537.
Watkins, N. J., A. Gottschalk, G. Neubauer, B. Kastner, P. Fabrizio, M. Mann, and R. Luhrmann. 1998. Cbf5p, a potential pseudouridine synthase, and Nhp2p, a putative RNA-binding protein, are present together with Gar1p in all H BOX/ACA-motif snoRNPs and constitute a common bipartite structure. RNA 4 :1549-1568.
Henras, A., Y. Henry, C. Bousquet-Antonelli, J. Noaillac-Depeyre, J. P. Gelugne, and M. Caizergues-Ferrer. 1998. Nhp2p and Nop10p are essential for the function of H/ACA snoRNPs. EMBO J. 17 :7078-7090.
Li, S. G., H. Zhou, Y. P. Luo, P. Zhang, and L. H. Qu. 2005. Identification and functional analysis of 20 Box H/ACA small nucleolar RNAs (snoRNAs) from Schizosaccharomyces pombe. J. Biol. Chem. 280 :16446-16455.
Liang, X. H., Q. Liu, and M. J. Fournier. 2009. Loss of rRNA modifications in the decoding center of the ribosome impairs translation and strongly delays pre-rRNA processing. RNA 15 :1716-1728.