Extracting information from published crystallographic data
Steps in solving a structure

1. Clone gene
2. Express protein
3. Purify
4. Crystallize
5. Measure X-ray diffraction
6. Calculate electron density
7. Build atomic model, interpret and publish

BMB695a

Karsten Theis, UMass Amherst
Topics

Case 1: the refolding loop
- Missing atoms, B-factors and multiple crystal forms as a measure of flexibility
- What is the role of crystal contacts?
- Looking at electron density

Case 2: How do we get from A to B?
- Superimposing similar structures
- Looking for clashes

Case 3: How careful was I in 1999?
- Checking your favorite part of a protein structure for possible alternative interpretations
Case 1: from Selase’s PhD defense

• Proteolytic assay to probe for transition between transcription initiation and elongation in T7 RNA polymerase

• Protein conformation of both initiation and elongation state are known (1QLN, 1MSW)

• Question from the audience: “Does the refolding loop really refold, or does it transition from unfolded to folded?”
Figure 1.1.0: Labeled regions of the crystal structures of T7 RNA polymerase initiation and elongation complexes. (A) Initiation complex (1QLN); (B) Elongation complex (1MSW); Part of the C-terminal domain (residues 72-152 and 204-258) is color coded in grey, while the rigid N-terminal domain is colored forest green. In the elongation complex, the N-terminal 20 residues gets extended by residues 44-60 to 38 residues and the entire helix is colored yellow.
The proteolytic assay

Figure 2.6.0: Partial tryptic digest of transcription complexes;
(A) SDS gel electrophoresis of complexes halted at the indicated position and then exposed to 1.2 equivalents of trypsin for 30 seconds prior to quenching in a 5X SDS gel loading buffer (0.225M Tris HCl, 5% SDS, 50% glycerol and 0.05% bromophenol blue) at room temperature. ‘E’ shows the polymerase only, without proteolysis; (B) Plot of sink challenge data from figure 2.4.0 (□) compared to plot of the relative band intensity ($I_{80kDa}/(I_{80kDa} + I_{88kDa} + I_{98kDa})$) at each stall position in “A” (○).
Case 1: list of tasks

1. Check for missing atoms/residues
2. Look at B-factors
3. Check for crystal contacts
4. Look at other crystal forms
The Protein Database (PDB)

• All journals require deposition of coordinates (sometimes instantly, sometimes after 6 mo)
• Not all journals require deposition of raw data

• Some information is easily available directly from the PDB, but some questions require downloading the crystallographic model and looking at it with specialized tools
• T7 polymerase during initiation: 1QLN
Tools

• **Firstglance in Jmol**
• **Electron density server** (only if raw data available)
 – Download density
 – **How well do atoms fit to map?**
 – Many other aspects
• **What if?** (you can upload your own coordinates)
 – **Crystal contacts to 5 Å distance**
 – **Atomic clashes**
• Helixweb, NIH
 – **B-factor plot**
B-factors and disorder

- Synonyms: Temperature factors, atomic displacement factors
- B-factors describe how the electron density of an atom is broadened by static and dynamic disorder in the crystal

Static disorder: distinct atomic positions in different unit cells of the crystal
Dynamic disorder: changes in conformation over time during the measurement

<table>
<thead>
<tr>
<th>B-factor</th>
<th>Displacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Å²</td>
<td>0.25 Å</td>
</tr>
<tr>
<td>40 Å²</td>
<td>0.51 Å</td>
</tr>
<tr>
<td>80 Å²</td>
<td>1.01 Å</td>
</tr>
</tbody>
</table>
Disorder makes interpretation more difficult.

Shading represents noise due to:
1) errors in experimental data
2) errors in phases derived from model.
The asymmetric unit

- Crystal symmetry duplicates/triplicates etc. molecules placed into the unit cell
- The unique volume of the unit cell not related by crystal symmetry is called asymmetric unit
- Non-crystallographic symmetry (NCS)
 - the asymmetric unit often contains more than one copy of the protein
 - the operations superimposing these multiple copies are called non-crystallographic symmetry operations
 - NCS-related molecules aren’t identical and have different crystal environments
<table>
<thead>
<tr>
<th>PDB ID</th>
<th>Description</th>
<th>Resolution</th>
<th>Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1ARO</td>
<td>X-ray, 2.80 Å</td>
<td>P=1-883</td>
<td></td>
</tr>
<tr>
<td>1CEZ</td>
<td>X-ray, 2.40 Å</td>
<td>A=1-883</td>
<td></td>
</tr>
<tr>
<td>1H38</td>
<td>X-ray, 2.90 Å</td>
<td>A/B/C/D=1-883</td>
<td></td>
</tr>
<tr>
<td>1MSW</td>
<td>X-ray, 2.10 Å</td>
<td>D=1-883</td>
<td></td>
</tr>
<tr>
<td>1QLN</td>
<td>X-ray, 2.40 Å</td>
<td>A=1-883</td>
<td></td>
</tr>
<tr>
<td>1SOV</td>
<td>X-ray, 3.20 Å</td>
<td>A/B/C/D=1-883</td>
<td></td>
</tr>
<tr>
<td>1S76</td>
<td>X-ray, 2.88 Å</td>
<td>D=1-883</td>
<td></td>
</tr>
<tr>
<td>1S77</td>
<td>X-ray, 2.69 Å</td>
<td>D=1-883</td>
<td></td>
</tr>
<tr>
<td>2PI4</td>
<td>X-ray, 2.50 Å</td>
<td>A=6-883</td>
<td></td>
</tr>
<tr>
<td>2PI5</td>
<td>X-ray, 2.90 Å</td>
<td>A=6-883</td>
<td></td>
</tr>
<tr>
<td>4RNP</td>
<td>X-ray, 3.00 Å</td>
<td>A/B/C=1-883</td>
<td></td>
</tr>
</tbody>
</table>
Case 2

- Selase found that the refolding loop is protected from proteolysis before the promoter falls off.
- Can we build a model in which the refolding loop is in the elongation conformation while the rest of the N-terminal part of T7 RNAP is still in its initiation conformation?
- Tasks
 - Superimpose the two structures
 - Look for clashes
 - Modify the resulting model to remove clashes
Interpretation of electron density
Building a model into the electron density involves interpretation and prior knowledge.

- Protein/solvent regions
- C-alpha trace
- main chain, peptide direction
- sequence assignment
- side chain conformations
- disulfides, metals, glycosylation and other surprises
Pop quiz: interpreting electron density

1) Which pairs of amino acids have very similar electron density and are thus difficult to distinguish crystallographically? Asp/Glu ; Thr/Val ; Leu/Ile ; Lys/Met ; Asp/Asn ; Leu/Asp ; Glu/Gln

2) Which amino acids other than histidine have two side chain conformations resulting in almost identical electron density? What could help to distinguish the two possible conformations?