Endoplasmic reticulum retention is a common defect associated with tyrosinase-negative albinism

Ruth Halaban*,†, Sheri Svedine‡, Elaine Cheng*, Yoel Smicun*, Rebecca Aron*, and Daniel N. Hebert‡

*Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520; and ‡Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003

Communicated by Aaron B. Lerner, Yale University School of Medicine, New Haven, CT, March 16, 2000 (received for review February 17, 2000)

Tyrosinase is a melanocyte-specific enzyme critical for the synthesis of melanin, a process normally restricted to a post-Golgi compartment termed the melanosome. Loss-of-function mutations in tyrosinase are the cause of oculocutaneous albinism, demonstrating the importance of the enzyme in pigmentation. In the present study, we explored the possibility that trafficking of albino tyrosinase from the endoplasmic reticulum (ER) to the Golgi apparatus and beyond is disrupted. Toward this end, we analyzed the common albino mouse mutation Tyr(C85S), the frequent human ALMase from the endoplasmic reticulum (ER) to the Golgi apparatus, and the temperature-sensitive common albino mouse mutation Tyr(C85S), the frequent human mutation termed the melanosome. Loss-of-function mutations in tyrosinase (monophenol, L-dopa:oxygen oxidoreductase, EC 1.14.18.1) are the cause of classic type I oculocutaneous albinism, an autosomal recessive genetic disorder characterized by the absence of melanin in melanocytes (1). The enzyme catalyzes the hydroxylation of tyrosine to dopa, plus the oxidations of dopa to DOPAquinone and 5,6-dihydroxyindole to indole-5,6-quinone, key reactions in melanin biosynthesis (2–4). The amino acid sequences deduced from human and mouse tyrosinase (TYR and Tyr, respectively) cDNAs predict a sequence and catalytic copper binding regions with conserved glycans, producing the 70-kDa species (10, 11). Complex sugar modifications in the Golgi apparatus further increases tyrosinase’s molecular mass to 80 kDa, the size of the mature wild-type (WT) isoform (10–12).

The early 70-kDa folding intermediate interacts with calnexin and calreticulin (10–12), lectin chaperones known to bind to misfolded proteins possessing monoglucosylated glycans and to help increase folding efficiency (refs. 13 and 14, reviewed in ref. 15). In normal melanocytes the 70-kDa protein eventually is released from this complex and proceeds to the Golgi apparatus en route to the melanosomes, the site of melanin synthesis. In contrast, in amelanotic melanoma cells, WT tyrosinase accumulates as the early 70-kDa species associated with calnexin and subsequently is targeted for degradation by the ubiquitin-dependent proteasome pathway (12).

Tyrosinase from several albino mutant melanocytes also appears as a 70-kDa protein (16–20). In this report, we analyzed the effect on ER processing and intracellular localization of four mutations commonly associated with oculocutaneous albinism. The mutant proteins were studied in their natural form or as tagged proteins in their native environment, the melanocyte. We demonstrate that the albino mutants are underprocessed proteins bound to calnexin and calreticulin that do not progress beyond the ER, indicating that albinism belongs to the growing group of ER retention diseases.

Materials and Methods

WT and Mutant Melanocytes. Cultured human melanocytes from newborn foreskins (12) were used as WT controls, and melanocytes carrying the common T373K substitution (19), termed TYR(T373K), cultured from an individual with oculocutaneous albinism, were the source for mutant human protein. Immortalized mouse melanocytes established from black B10BR mouse (21), served as WT controls, and albino melanocytes (22) homoygous for the c-locus (Tyr) mutation C85S (6, 23), termed Tyr(C85S), and himalayan homoygous for the temperature-sensitive (ts) H402A mutation (16, 24), termed Tyr(H402A), were the source for albino mouse enzyme. The light and dark himalayan melanocytes originated from the same homozygous mutant mice were of similar passage, except that for as yet undefined variability displayed different levels of pigmentation and possessed different forms of tyrosinase (16, 24).

Construction of Plasmids and Transfection. Plasmids encoding TYR linked to enhanced green fluorescent protein (EGFP) were constructed by ligation of the N terminus of GFP (from pEGFP-N1, CLONTECH) to the C-terminus tyrosinase cDNA (obtained from R. Spritz, University of Colorado Health Sciences Center, Denver), encoding human WT or mutant proteins carrying the R402Q (a ts mutation similar to mouse himalayan; ref. 25), or T373K mutation. The resulting fusion proteins in their native environment, the melanocyte. We subsequently studied the effect on ER processing and intracellular localization of four mutations commonly associated with oculocutaneous albinism. The mutant proteins were studied in their natural form or as tagged proteins in their native environment, the melanocyte. We demonstrate that the albino mutants are underprocessed proteins bound to calnexin and calreticulin that do not progress beyond the ER, indicating that albinism belongs to the growing group of ER retention diseases.

Abbreviations: CHAPS, 3-(3-cholamidopropyl)dimethylammonio)-1-propanesulfonate; endo H; endoglycosidase H; ER, endoplasmic reticulum; GFP, green fluorescent protein; TRP, tyrosinase-related protein; ts, temperature sensitive; Tyr, mouse tyrosinase; Tyr, mouse tyrosinase; WCL, whole-cell lysate; WT, wild type.

†To whom reprint requests should be addressed at: Yale University School of Medicine, Department of Dermatology, P.O. Box 208059, 15 York Street, HRT 616, New Haven, CT 06520-8059. E-mail: ruth.halaban@yale.edu.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. §1734 solely to indicate this fact.
encapsulated plasmid DNAs (20 μg/ml resistance to geneticin (G418). DOTAP ([3-
loxy)propyl]-N,N,N-trimethylammonium methylsulfate]-
capsulated plasmid DNAs (20 μg/ml each) were transfected into WT (B10BR) or albino Tyr(C85S) (melan c mouse melanocytes following the manufacturer’s instructions (Boehringer Mannheim). Melanocytes were subjected to selection in 1–1.5 mg/ml G418 starting 4–5 days after transfection. Ectopically expressed fusion proteins were analyzed within 3 weeks of transfection, using pTyrP/GFP as a control.

**Western Blotting and Coimmunoprecipitation.** Melanocytes were lysed in 3-[3-cholamidopropyl]dimethylammonio]-1-propanesulfonate (CHAPS) buffer (2% CHAPS in 50 mM Heps and 200 mM NaCl, pH 7.5) containing a mixture of protease inhibitors (Complete EDTA-free, Boehringer Mannheim). Western blotting was performed with whole-cell lysates (WCLs, 40 μg protein/lane), immunoprecipitated products (250 μg protein/lane), or bead-bound wheat germ agglutinin (Sigma) affinity-purified glycoproteins. Tyrosinase was detected with anti-human T311 mouse mAb (27), polyclonal rabbit PEP7 (28), or goat M-19 (Santa Cruz Biotechnology) antibodies raised against the C-terminal peptide of Tyr. Anti-calnexin rabbit antiserum SPA-860 (StressGen Biotechnologies, Victoria, Canada), and anti-calreticulin rabbit polyclonal antibodies SPA-600 (StressGen), or PA3–900 (ABR, Affinity Bioreagents, Golden, CO) were used in coimmunoprecipitation assays as described (12). Antigen-antibody complexes were detected by enhanced chemiluminescence (NEN).

**Carbohydrate Cleavage.** Cell lysates (300–400 μg protein) in 100 μl CHAPS lysis buffer were incubated with 50 μl of bead-bound wheat germ agglutinin for 2 h in the cold, under constant rotation. After washing twice with CHAPS buffer and once with PBS, bead-bound glycoproteins were digested with endoglycosidase H (endo H), according to the manufacturer’s instruction (Boehringer Mannheim). Reaction products were subjected to Western blotting with anti-tyrosinase antibodies.

**Radioactive Pulse/Chase.** Mouse melanocytes were starved for 2 h in Met/Cys-free RPMI 1640 medium, incubated with [35S]Met/Cys (0.88 mCi/ml, EasyTag, NEN) for 30 min, harvested immediately, or further incubated with Met/Cys-supplemented medium for 2 h. Melanocytes were collected and lysed in CHAPS buffer, and cell extracts were immunoprecipitated with anti-tyrosinase PEP7, anti-calnexin, or anti-calreticulin polyclonal antibodies as described (12). To detect calnexin/calreticulin-associated tyrosinase, the respective immunoprecipitates were dissociated by incubation with 1% SDS buffer, diluted 1:5 with 1% Triton X-100, and subjected to a second immunoprecipitation with anti-tyrosinase antibodies. Densities of radioactive bands were determined with a Molecular Dynamics PhosphorImager.

**Immunofluorescence Microscopy.** Cells were fixed in 4% formaldehyde/PBS, permeabilized with 0.1% Triton X-100/PBS, incubated with polyclonal antibodies (diluted in 0.1% BSA/PBS) against calnexin (StressGen) to localize the ER, α-1,2-mannosidase II (from M. Farquhar, University of California, San Diego, and K. Moremen, University of Georgia, Athens) to localize the Golgi apparatus, rabbit PEP7, or goat M-19 polyclonal antibodies to detect endogenous tyrosinase, and then with rhodamine anti-rabbit conjugates (Molecular Probes) or fluorescein anti-goat conjugates (Santa Cruz Biotechnology) diluted in 0.1% BSA/PBS. Indirect immunofluorescence was visualized with an inverted Bio-Rad MRC-600 Laser Confocal Microscope System. Images were processed with Bio-Rad Confocal Assistant software.

**Results**

**Albino Tyrosinase Mutants Accumulate as Immature ER Glycoforms.** Digestion with endo H was used to determine the state of posttranslational modification because endo H cleaves tyrosinase with early high mannose forms characteristic of ER species, but not forms containing complexed carbohydrate that are attached in the Golgi (12). In agreement with previous results (12), steady-state WT TYR displayed a broad band spanning 70–80 kDa composed of immature and mature species, whereas
WT Tyr appeared as a narrower band in the high molecular mass range, presumably representing the mature form (Fig. 1A, lanes 1 and 5, bands marked 80). In contrast, the undigested TYR(T373K), Tyr(C85S), and the amelanotic himalayan Tyr(H402A) migrated as the 70-kDa protein that was less abundant compared with its WT counterpart (Fig. 1A, lanes 3, 7, and 9; bands marked 70). The 70-kDa species of WT TYR and albino melanocytes corresponded to an endo H-sensitive glycoform, digested to a 60-kDa protein (Fig. 1A, lanes 2, 4, 8, and 10), the expected size of the deglycosylated protein (12). Dark himalayan melanocytes possessed the mature endo H-resistant 80-kDa form, in addition to the 70-kDa sensitive form (Fig. 1A, lanes 11 and 12). Interestingly, unlike WT TYR, Tyr was resistant to endo H digestion (Fig. 1A, compare lane 5 to 6), showing that under steady-state conditions, the majority of the enzyme is in the Golgi processed form. TYR(T373K) appeared as a doublet protein migrating at a slightly lower position than the fastest form of TYR (Fig. 1A, compare lane 1 to 3 and lane 2 to 4). This finding is consistent with the preservation of the inefficient glycosylation site Asn-Gly-Thr-Pro (amino acids 290-293) in WT TYR (A. Ujvari, R.A., S. Drabic, E.C., Y.S., R.H., and D.N.H., unpublished work). Similar assays revealed that calnexin and calreticulin associated with the 70-kDa WT TYR glycoform, but not with the fully processed 80-kDa species (Fig. 1B, lanes 2 and 3). There was inefficient binding to WT Tyr (Fig. 1B, lanes 10 and 11), in agreement with the lack of early glycoforms in steady-state conditions, as previously demonstrated by its resistance to endo H digestion (Fig. 1A, lane 6). In all mutant albino melanocytes, a large proportion of the 70-kDa tyrosinase species remained bound to the two chaperones (Fig. 1B, lanes 6, 7, 14, 15, 18, and 19).

A similar pattern of chaperone association was observed with newly synthesized tyrosinase. After a 30-min pulse with [35S]-Met/Cys, the 70-kDa glycoform of WT and albino Tyr(C85S) (Fig. 1C, lanes 1 and 7), was bound to calnexin and calreticulin (Fig. 1C, lanes 2, 3, 8, and 9). The efficiency of binding to calnexin (14% of total Tyr) was similar to that for calreticulin (9%) for both cell types. After a 2-h chase with unlabeled amino acids, WT Tyr migrated as an 80-kDa species that was no longer bound to the lectin chaperones, whereas Tyr(C85S) persisted as the 70-kDa species bound to calnexin and calreticulin, indicating that Tyr(C85S) remained misfolded in the ER for at least 2 h after synthesis.

**Persistent Chaperone Binding to Albino Mutants.** Calnexin and calreticulin are homologous ER lectin chaperones that assist in folding and retention of proteins in the ER until they are properly folded or assembled (15). Indeed, previous communoprecipitation assays showed that the two remained bound to misfolded WT tyrosinase produced in vivo (12) and in a cell-free system (A. Ujvari, R.A., S. Drabic, E.C., Y.S., R.H., and D.N.H., unpublished work). Similar assays revealed that calnexin and calreticulin associated with the 70-kDa WT TYR glycoform, but not with the fully processed 80-kDa species (Fig. 1B, lanes 1 and 2). There was inefficient binding to WT Tyr (Fig. 1B, lanes 10 and 11), in agreement with the lack of early glycoforms in steady-state conditions, as previously demonstrated by its resistance to endo H digestion (Fig. 1A, lane 6). In all mutant albino melanocytes, a large proportion of the 70-kDa tyrosinase species remained bound to the two chaperones (Fig. 1B, lanes 6, 7, 14, 15, 18, and 19).

**Fig. 2.** Albino (C85S) mouse tyrosinase is retained in the ER. Immunofluorescence confocal microscopy of WT and albino (C85S) mouse melanocytes. (Left) The green fluorescein-stained panels represent tyrosinase detected with goat polyclonal anti-mouse tyrosinase antibodies. (Middle) The red rhodamine-stained panels show resident ER and Golgi complex markers, calnexin, and α-1,2-mannosidase II, respectively. (Right) Merged images. Tyrosinase colocalization with each protein is indicated in yellow in the merge images. (The bars represent 1 μm.)
H-digested (the ER. Concluded that steady-state WT Tyr was distributed to the ER.

However, whereas WT TYR colocalized with the Golgi apparatus marker, Tyr(C85S) did not (Fig. 2, Merge). We therefore found exclusively in the reticular ER, colocalizing with calnexin (CNX, to Merge). In contrast, Tyr(C85S) was found in the reticular ER, colocalizing with calnexin (Fig. 2, C85S, compare Tyr and CNX, to Merge). In addition, WT Tyr also was localized to bright spots outside the ER perinuclear region (Fig. 2, WT, compare Tyr and CNX, to Merge). In contrast, Tyr(C85S) was found exclusively in the reticular ER, colocalizing with calnexin (Fig. 2, C85S, compare Tyr and CNX, to Merge).

Albino Tyrosinase Is Localized to the ER. Subcellular localization with indirect confocal immunomicroscopy confirmed our biochemical analyses. In these images WT Tyr was displayed in a punctate reticular pattern, coincident with calnexin staining, representative of the ER. In addition, WT Tyr also was localized to bright spots outside the ER perinuclear region (Fig. 2, WT, compare Tyr and CNX, to Merge). In contrast, Tyr(C85S) was found exclusively in the reticular ER, colocalizing with calnexin (Fig. 2, C85S, compare Tyr and CNX, to Merge).

Staining for α-1,2-mannosidase II showed the expected Golgi complex localization in a punctate pattern on one side of the nucleus in WT and albino mouse melanocytes (Fig. 2, Mann.). However, whereas WT TYR colocalized with the Golgi apparatus marker, Tyr(C85S) did not (Fig. 2, Merge). We therefore concluded that steady-state WT Tyr was distributed to the ER and the Golgi complex, whereas Tyr(C85S) was retained in the ER.

 Trafficking of TYR-GFP Chimeras in Mouse Melanocytes. To monitor the trafficking of TYR in melanocytes, we transiently expressed the tyrosinase-GFP chimeras, WT TYR-GFP, TYR(T373K)-GFP, and TYR(R402Q)-GFP, in mouse melanocytes. Functional integrity was confirmed by the conversion of the amelanotic melanocytes to pigmented cells in response to WT TYR-GFP, but not TYR(T373K)-GFP expression (Fig. 3A), and by the colocalization of the green fluorescence of WT TYR-GFP with endogenous WT Tyr (Fig. 3B).

Western blotting also confirmed the synthesis of the predicted size chimeric molecules with the expected phenotype. The TYR-GFP chimeras were distinguished from endogenous WT Tyr by their larger size, composed of the 27-kDa GFP and 70- to 80-kDa tyrosinase, and their preferential immunoreactivity with anti-TYR mAb T311, but not with the mouse-specific PEP7 (Fig. 4A, compare lanes 1–6 to 7–12). Also observed were faster migrating T311 immunoreactive bands comprised of faintly reactive endogenous Tyr and degradation products of chimeric molecules. Endo H digestion further extended the similarities shared by the chimeric proteins and native tyrosinase species. Regardless of temperature, WT TYR-GFP appeared as a broad endo H-resistant protein band of 100–110 kDa, and arrowhead points at endogenous Tyr. Bars indicate molecular mass protein markers. (B) Western blots with T311 mAb of undigested (−) and endo H-digested (+) proteins. Glycoproteins from extracts (300–400 μg/transfected) were precipitated with wheat germ agglutinin-bound beads for 2 h and then incubated without (−) or with (+) endo H overnight. Arrow indicates the position of undigested chimeric proteins, gray arrowheads (in lanes 2 and 4) point to endo H-digested WT TYR-GFP proteins, and arrowheads mark endogenous Tyr. Host mouse melanocytes are as in A.

 Fig. 4. Processing of ectopic TYR-GFP chimeras is similar to native proteins. (A) Western blots of TYR-GFP transfectants (40 μg protein/lane) grown continuously at 37°C or after a 1 h shift to 32°C. Host melanocytes were WT (Host WT, lanes 1–4 and 7–10) or albino (Host, C85S, lanes 5, 6, 11, and 12). The same membrane was first blotted with T311 mAb (lanes 1–6), and then, without stripping, with PEP7 (lanes 7–12). Melanocytes were harvested 1 week after transfection with WT TYR-GFP (WT), TYR-GFP(T373K) (T373K), or TYR(R402Q)-GFP (R402Q). Arrow indicates chimeric proteins of 100–110 kDa, and arrowhead points at endogenous Tyr. Bars indicate molecular mass protein markers. (B) Western blots with T311 mAb of undigested (−) and endo H-digested (+) proteins. Glycoproteins from extracts (300–400 μg/transfected) were precipitated with wheat germ agglutinin-bound beads for 2 h and then incubated without (−) or with (+) endo H overnight. Arrow indicates the position of undigested chimeric proteins, gray arrowheads (in lanes 2 and 4) point to endo H-digested WT TYR-GFP proteins, and arrowheads mark endogenous Tyr. Host mouse melanocytes are as in A.

 Fig. 5. The albino T373K TYR mutation causes retention in the ER. Micrographs showing green fluorescence from the chimeric proteins WT TYR-GFP (WT) and TYR(T373K)-GFP (T373K) (Left), transiently expressed in WT mouse melanocytes, calnexin (CNX), and α-1,2-mannosidase II (Mann) stained with rhodamine (Middle), and merge of the two respective images (Right). (The bars represent 1 μm.)
Pigmentation is a multistep process critically dependent on the functional integrity of tyrosinase, the rate-limiting enzyme in melanosome. At the permissive temperature of 32°C, the protein was able to reach vesicles in the dendrites representative of melanosomes. In contrast, at the elevated temperature of 37°C, the protein maintained high mannose endo H-sensitive glycans and completely colocalized with the ER marker calnexin. TYR(R402Q) behaves like the much-studied CFTR(ΔF508) mutation that is responsible for the large majority of cases of cystic fibrosis (reviewed in ref. 29), and the model trafficking thermosensitive protein vesicular stomatitis virus G protein (tsO45 strain) (43).

Mutations in proteins involved in the transport of tyrosinase to melanosomes, such as the adaptor protein AP-3, also can cause albinism. AP-3 binds to a synthetic tail peptide of tyrosinase and is required for the transport of tyrosinase to melanosomes. In contrast, at the elevated temperature of 37°C, the protein maintained high mannose endo H-sensitive glycans and completely colocalized with the ER marker calnexin. TYR(R402Q) behaves like the much-studied CFTR(ΔF508) mutation that is responsible for the large majority of cases of cystic fibrosis (reviewed in ref. 29), and the model trafficking thermosensitive protein vesicular stomatitis virus G protein (tsO45 strain) (43).

Mutations in proteins involved in the transport of tyrosinase to melanosomes, such as the adaptor protein AP-3, also can cause albinism. AP-3 binds to a synthetic tail peptide of tyrosinase and is required for the transport of tyrosinase to melanosomes. In contrast, at the elevated temperature of 37°C, the protein maintained high mannose endo H-sensitive glycans and completely colocalized with the ER marker calnexin. TYR(R402Q) behaves like the much-studied CFTR(ΔF508) mutation that is responsible for the large majority of cases of cystic fibrosis (reviewed in ref. 29), and the model trafficking thermosensitive protein vesicular stomatitis virus G protein (tsO45 strain) (43).

Mutations in proteins involved in the transport of tyrosinase to melanosomes, such as the adaptor protein AP-3, also can cause albinism. AP-3 binds to a synthetic tail peptide of tyrosinase and is required for the transport of tyrosinase to melanosomes. In contrast, at the elevated temperature of 37°C, the protein maintained high mannose endo H-sensitive glycans and completely colocalized with the ER marker calnexin. TYR(R402Q) behaves like the much-studied CFTR(ΔF508) mutation that is responsible for the large majority of cases of cystic fibrosis (reviewed in ref. 29), and the model trafficking thermosensitive protein vesicular stomatitis virus G protein (tsO45 strain) (43).

Mutations in proteins involved in the transport of tyrosinase to melanosomes, such as the adaptor protein AP-3, also can cause albinism. AP-3 binds to a synthetic tail peptide of tyrosinase and is required for the transport of tyrosinase to melanosomes. In contrast, at the elevated temperature of 37°C, the protein maintained high mannose endo H-sensitive glycans and completely colocalized with the ER marker calnexin. TYR(R402Q) behaves like the much-studied CFTR(ΔF508) mutation that is responsible for the large majority of cases of cystic fibrosis (reviewed in ref. 29), and the model trafficking thermosensitive protein vesicular stomatitis virus G protein (tsO45 strain) (43).

Mutations in proteins involved in the transport of tyrosinase to melanosomes, such as the adaptor protein AP-3, also can cause albinism. AP-3 binds to a synthetic tail peptide of tyrosinase and is required for the transport of tyrosinase to melanosomes. In contrast, at the elevated temperature of 37°C, the protein maintained high mannose endo H-sensitive glycans and completely colocalized with the ER marker calnexin. TYR(R402Q) behaves like the much-studied CFTR(ΔF508) mutation that is responsible for the large majority of cases of cystic fibrosis (reviewed in ref. 29), and the model trafficking thermosensitive protein vesicular stomatitis virus G protein (tsO45 strain) (43).

Mutations in proteins involved in the transport of tyrosinase to melanosomes, such as the adaptor protein AP-3, also can cause albinism. AP-3 binds to a synthetic tail peptide of tyrosinase and is required for the transport of tyrosinase to melanosomes. In contrast, at the elevated temperature of 37°C, the protein maintained high mannose endo H-sensitive glycans and completely colocalized with the ER marker calnexin. TYR(R402Q) behaves like the much-studied CFTR(ΔF508) mutation that is responsible for the large majority of cases of cystic fibrosis (reviewed in ref. 29), and the model trafficking thermosensitive protein vesicular stomatitis virus G protein (tsO45 strain) (43).

Mutations in proteins involved in the transport of tyrosinase to melanosomes, such as the adaptor protein AP-3, also can cause albinism. AP-3 binds to a synthetic tail peptide of tyrosinase and is required for the transport of tyrosinase to melanosomes. In contrast, at the elevated temperature of 37°C, the protein maintained high mannose endo H-sensitive glycans and completely colocalized with the ER marker calnexin. TYR(R402Q) behaves like the much-studied CFTR(ΔF508) mutation that is responsible for the large majority of cases of cystic fibrosis (reviewed in ref. 29), and the model trafficking thermosensitive protein vesicular stomatitis virus G protein (tsO45 strain) (43).
comprise up to 0.4% of the total cellular protein (10). This notion is supported by studies of tyrosinase processing and maturation in human melanoma cells that have lost at least part of their differentiated phenotype (12) and by experiments using heterologous cellular systems, such as COS7 cells (51). In both cases tyrosinase remains mostly as the immature 70-kDa glycoform that is bound to calnexin. At least two melanocyte-specific proteins, TRP1 and the pink-eyed dilution, contribute to tyrosinase’s stability (52, 53), which also might be affected in melanoma cells. The observations that WT tyrosinase behaves like mutant proteins in nonheterologous or dedifferentiated cell types (12, 51) underscore the importance of exploring maturation, quality control, and degradation in normal host cells that contain all of the components required to lead tyrosinase to the melanosomes, its final destination in melanocytes.

We thank Dr. R. Spritz (Human Medical Genetics Program, University of Colorado Health Sciences Center, Denver) for the human tyrosinase cDNA clones, Drs. S. Pomerantz (Rehovot, Israel), L. Old (Ludwig Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York), and V. Hearing (Laboratory of Cell Biology, National Institutes of Health, Bethesda, MD) for anti-tyrosinase antibodies, Drs. L. Farquhar (Departments of Cellular and Molecular Medicine and Pathology, University of California, San Diego) and K. Moremen (Department of Biochemistry and Molecular Biology, University of Georgia, Athens) for the anti-α,1,2-mannosidase II antibodies, and Dr. Shigeki Shibahara, Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai, Japan, for the tyrosinase promoter. This work was supported by National Institutes of Health Grants AR39848 to R.H. and AR41942 (Yale Skin Diseases Research Center; R. E. Tigelaa, Program Investigator), and grants from The Medical Foundation, Edward Mallinckrodt, Jr. Foundation, and National Institutes of Health Grant CA79864 to D.N.H.